

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

What you can do with JPQL
1. Define the attributes you want to select

Most developers use JPQL to select entities. But that’s not the only
projection you can use. You can define a list of entity attributes
which you want to select as scalar values.

You can also use constructor expressions to define a constructor call.

2. Join related entities in the FROM clause

There are 2 different ways to join related entities in JPQL queries.
You can either create an implicit join by using the path operator in
your SELECT, WHERE, GROUP BY, HAVING or ORDER clause:

List<Object[]> authorNames = em.createQuery(

“SELECT a.firstName, a.lastName FROM Author a”)

.getResultList();

List<BookPublisherValue> bookPublisherValues =

em.createQuery(“SELECT new

org.thoughts.on.java.model.BookPublisherValue(b.title,

b.publisher.name) FROM Book b”,BookPublisherValue.class)

.getResultList();

em.createQuery(

“SELECT b.title, b.publisher.name FROM Book b”)

.getResultList();

http://www.thoughts-on-java.org/

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

or you define an explicit join in the FROM clause:

I always recommend to define an explicit join in the FROM clause and
not to mix the 2 approaches. Some older Hibernate versions
generated 2 joins for the same relationship if you used implicit and
explicit joins in the same JPQL statement. So better be careful.

3. Join unrelated entities in the FROM clause

Joining of unrelated entities is a Hibernate specific feature that I’m
missing in JPA. Since Hibernate 5.1, you can join unrelated entities in
a JPQL query. The syntax is very similar to SQL and I explained it in
more detail in a previous post.

em.createQuery(

“SELECT b.title, p.name FROM Book b JOIN

b.publisher p”)

.getResultList();

em.createQuery(

“SELECT p.firstName, p.lastName, n.phoneNumber

FROM Person p JOIN PhoneBookEntry n ON p.firstName =

n.firstName AND p.lastName = n.lastName“)

.getResultList();

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/how-to-join-unrelated-entities/

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

4. Use conditional expressions in the WHERE and HAVING clause

JPQL supports a standard set of conditional expressions in the
WHERE and HAVING clauses. You can use them to limit the result set
to all Authors with an id equal to the given bind parameter value.

5. Use subqueries in the WHERE and HAVING clause

For some reason, JPQL’s support for subqueries seems to be a lesser
known feature. It’s not as powerful as in SQL because it’s limited to
the WHERE and HAVING clause, but you can use it at least there.

6. Group your query results with GROUP BY and apply additional
conditional expressions with HAVING

GROUP BY and HAVING are standard clauses in SQL, and that’s the
same for JPQL. You can use them to group similar records in your
result set and to apply additional conditional expressions on these
groups.

Query q = em.createQuery(

“SELECT a FROM Author a WHERE a.id = :id”);

Query q = em.createQuery(

“SELECT a FROM Author a WHERE a.id IN (SELECT

s.authorId FROM SpecialAuthors s)”);

em.createQuery(

“SELECT a, count(b) FROM Author a JOIN a.books b

GROUP BY a”)

.getResultList();

http://www.thoughts-on-java.org/

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

7. Order the query results with ORDER BY

ORDER BY is another JPQL clause that you know from SQL. You can
use it to order the result of a query, and you should, of course, use it
instead of ordering the result set in your Java code.

8. Limit the number of records in your result set

The implementation of this feature feels a little bit strange if you’re
used to the SQL syntax. JPQL doesn’t know the LIMIT keyword. You
have to define the maximum number of returned rows on the Query
interface and not in the JPQL statement. That has the benefit that
you can do that in the same way for JPQL and Criteria API queries.

9. Use standard functions

JPQL also supports a small set of standard functions that you can use
in your queries. You can use them to perform simple operations in
the database instead of your Java code.

em.createQuery(

“SELECT a FROM Author a ORDER BY a.lastName”)

.getResultList();

em.createQuery(“SELECT a FROM Author a”)

.setMaxResults(10)

.getResultList();

em.createQuery(

“SELECT a, count(b) FROM Author a JOIN a.books b

GROUP BY a”)

.getResultList();

http://www.thoughts-on-java.org/
https://en.wikibooks.org/wiki/Java_Persistence/JPQL#JPQL_supported_functions

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

10. Use non-standard and database specific functions

SQL supports more functions than JPQL and in addition to that, most
databases provide a huge set of proprietary functions. Hibernate’s
database-specific dialects offer proprietary support for some of these
functions and since JPA 2.1 you can call all functions supported by
your database with a call of the function function.

11. Call stored procedures

JPA 2.1 also introduced the @NamedStoredProcedureQuery and the
dynamic StoredProcedureQuery to provide basic support for stored
procedure calls.

em.createQuery(

“SELECT a FROM Author a WHERE a.id =

function(‘calculate’, 1, 2)“, Author.class)

.getSingleResult();

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/database-functions/
http://www.thoughts-on-java.org/call-stored-procedures-jpa/
http://www.thoughts-on-java.org/call-stored-procedures-jpa-part-2/

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

What you can’t do with JPQL
As you’ve seen, JPQL supports a set of features that allows you to
create queries up to a certain complexity. In my experience, these
queries are good enough for most use cases. But if you want to
implement reporting queries or have to rely on database-specific
features, you will miss a lot of advanced SQL features. Here are a few
of them that I miss on a regular basis.

1. Use subqueries outside of WHERE and HAVING clauses

That’s the only features I often miss in JPQL and something that’s
annoying me for quite a while. With JPQL, you can use subqueries
only in the WHERE and HAVING clauses but not in the SELECT and
FROM clause.

SQL, of course, allows you to use subqueries also in the SELECT and
FROM clause. In my experience, this is nothing you need on a daily
basis, but I think I use it a few times in all of my projects.

2. Perform set operations

UNION, INTERSECT, and EXCEPT allow you to perform standard set
operations on the result sets of independent queries. Lukas Eder
explains them in detail in his blog post: You Probably don’t Use SQL
INTERSECT or EXCEPT Often Enough.

3. Use database specific hints

Most databases support proprietary query hints that allow you to
provide additional information about your query. For some queries,
the right set of hints can have a huge performance impact. You can
learn about hints in Markus Winand’s post: About Optimizer Hints.

4. Write recursive queries

Recursive queries are another nice SQL feature that allows you to
traverse a graph of related database records.

http://www.thoughts-on-java.org/
https://blog.jooq.org/2015/10/06/you-probably-dont-use-sql-intersect-or-except-often-enough/
https://blog.jooq.org/2015/10/06/you-probably-dont-use-sql-intersect-or-except-often-enough/
http://use-the-index-luke.com/de/blog/2013-07/about-query-optimizer-hints
https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL

Is your query too complex for JPA and Hibernate?

www.thoughts-on-java.org

5. Use window functions

If you don’t know about window functions in SQL, you have to watch
one of Lukas Eder’s SQL talks or read some of his posts on the jOOQ
blog. As soon as you understand this nifty SQL feature, you can do
amazing things, like running total calculations or analyzing data
series, with a relatively simple SQL statement.

http://www.thoughts-on-java.org/
https://www.youtube.com/watch?v=mgipNdAgQ3o#t=12m08s
https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

